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New generation vaccines, particularly those based on recombinant proteins and DNA, are likely to be
less reactogenic than traditional vaccines but are also less immunogenic. Therefore, there is an urgent
need for the development of new and improved vaccine adjuvants. Adjuvants can be broadly separated
into two classes based on their principal mechanisms of action: vaccine delivery systems and immuno-
stimulatory adjuvants. Vaccine-delivery systems generally are particulate (e.g., emulsions, micropar-
ticles, iscoms, and liposomes)and function mainly to target associated antigens into antigen-resenting
cells. In contrast, immunostimulatory adjuvants are derived predominantly from pathogens and often
represent pathogen-ssociated molecular patterns (e.g., lipopolysaccaride, monophosphoryl lipid A, CpG
DNA), which activate cells of the innate immune system. Recent progress in innate immunity is begin-
ning to yield insight into the initiation of immune responses and the ways in which immunostimulatory
adjuvants may enhance this process. The discovery of more potent adjuvants may allow the development
of prophylactic and therapeutic vaccines against cancers and chronic infectious diseases. In addition, new
adjuvants may also allow vaccines to be delivered mucosally.
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sions.

INTRODUCTION

Traditional vaccines have mainly consisted of live attenu-
ated pathogens, whole inactivated organisms, or inactivated
bacterial toxins. Generally, these approaches have been suc-
cessful for vaccine development as a result of the induction of
antibodies, which neutralize viruses or bacterial toxins, inhibit
the binding of microorganisms to cells, or promote their up-
take by phagocytes. However, to develop vaccines against
more challenging and difficult pathogens that often establish
chronic infections, e.g., HIV, hepatitis C virus (HCV), tuber-
culosis, and malaria, the induction of potent and focused cell-
mediated immunity (CMI) will be necessary and may require
the induction of cytotoxic T lymphocytes (CTL), which kill
host cells infected with intracellular organisms. Unfortu-
nately, non-living vaccines generally have proven ineffective
at inducing potent CMI responses, particularly of the Th1
type. T helper cells can be classified into Th2 and Th1 sub-
types, mainly based on their production of cytokines. Th1
responses are characterized by the production of � interferon.
In addition, although live vaccines can induce CTL, live at-
tenuated vaccines may cause disease in immunosuppressed
individuals, and some pathogens are difficult or impossible to
grow in culture (e.g., HCV), making the development of in-
activated vaccines impossible. In addition, many traditional
inactivated vaccines based on whole cells often contain com-
ponents that can cause side effects and safety problems, e.g.,

lipopolysaccharides (LPS). As a result of these limitations,
several new approaches to vaccine development have
emerged that may have significant advantages over more tra-
ditional approaches. These approaches include 1) recombi-
nant protein subunits; 2) synthetic peptides; 3) protein poly-
saccharide conjugates; and 4) plasmid DNA. Although these
new approaches may offer some advantages, a general prob-
lem is that the vaccines alone are often poorly immunogenic.
Traditional vaccines often contain many components that can
elicit additional T cell help or function as adjuvants, e.g., bac-
terial DNA or LPS in whole cell vaccines. However, these
components have been eliminated from new generation vac-
cines, which, therefore, need potent adjuvants. In the very
recent past, there has been great interest in DNA vaccines
because they appear to offer significant potential for the in-
duction of potent CTL responses (1). Nevertheless, the po-
tency of DNA vaccines in humans has so far been disappoint-
ing, particularly in relation to their ability to induce antibody
responses (2,3). This has prompted investigators to work on
adjuvants and delivery systems for DNA vaccines and also to
use DNA in a prime/boost setting with alternative modalities,
e.g., live viruses (4–6).

Immunological adjuvants were described originally by
Ramon (7) as “substances used in combination with a specific
antigen that produced a more robust immune response than
the antigen alone.” This broad definition encompasses a very
wide range of materials (8). However, despite extensive
evaluation of a large number of candidates over many years,
the only adjuvants currently approved by the US Food and
Drug Administration are aluminum-based mineral salts (ge-
nerically called alum). Alum has a good safety record, but
comparative studies show that it is a weak adjuvant for anti-
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body induction to recombinant protein vaccines and induces a
Th2, rather than a Th1 response (9). In addition, Alum is not
effective for the induction of mucosal IgA antibody re-
sponses. Moreover, alum adjuvants can induce IgE antibody
responses and have been associated with allergic reactions in
some subjects (9,10). Although Alum has been used as an
adjuvant for many years, its mechanism of action remains
poorly defined. It was originally thought to provide a “depot”
effect, resulting in the persistence of antigen at the injection
site. However, more recent studies involving radiolabeled an-
tigens suggest that this is not the case (11). Recent work has
indicated that Alum upregulates costimulatory signals on hu-
man monocytes and promotes the release of interleukin
(IL)-4 (12). Alum adsorption may also contribute to a reduc-
tion in toxicity for some vaccines because of the adsorption of
contaminating LPS (13).

A key issue in adjuvant development is toxicity because
safety concerns have restricted the development of adjuvants
since Alum was first introduced more than 50 years ago (14).
Many experimental adjuvants have advanced to clinical trials
and some have demonstrated high potency, but most have
proven too toxic for routine clinical use. For standard pro-
phylactic immunization in healthy individuals, only adjuvants
that induce minimal adverse effects will prove acceptable.
Additional practical issues that are important for adjuvant
development include biodegradability, stability, the ease of
manufacture, cost, and applicability to a wide range of vac-
cines. Examples of different classes of adjuvants that have
been evaluated for vaccines against infectious diseases are
shown in Table I.

THE ROLE OF ADJUVANTS IN
VACCINE DEVELOPMENT

Adjuvants can be used to improve the immune response
to vaccine antigens in several different ways, including 1) in-
creasing the immunogenicity of weak antigens; 2) enhancing
the speed and duration of the immune response; 3) modulat-
ing antibody avidity, specificity, isotype, or subclass distribu-
tion; 4) stimulating CTL; 5) promoting the induction of mu-
cosal immunity; 6) enhancing immune responses in immuno-
logically immature or senescent individuals; 7) decreasing the
dose of antigen in the vaccine to reduce costs; or 8) helping to
overcome antigen competition in combination vaccines.

The mechanisms of action of most adjuvants still remain
only poorly understood because immunization often activates
a complex cascade of responses and the primary effect of the
adjuvant is often difficult to clearly discern. However, if one
accepts the geographical concept of immune reactivity, in
which antigens that do not reach the local lymph nodes do not
induce responses (15), it becomes easier to propose mecha-
nistic interpretations for some adjuvants, particularly those
based on a “delivery” mechanism. If antigens, which do not
reach lymph nodes, do not induce responses, then any adju-
vant that enhances the delivery of antigen into the cells that
traffic to the lymph node may enhance the response. A subset
of dendritic cells (DCs) are thought to be the key cells that
circulate in peripheral tissues and act as “sentinels,” being
responsible for the uptake of antigens and their transfer to
lymph nodes, where they are then presented to T cells. Cir-
culating immature DCs are efficient for antigen uptake,
whereas mature DCs are efficient at antigen presentation to T

cells. Hence, promoting antigen uptake into DC, traficking to
lymph nodes, and DC maturation are thought to be key com-
ponents to the generation of potent immune responses. DCs
are thought to be the most effective antigen-presenting cells
(APCs), although macrophages can also function in this role.

The dominant paradigm in immunology for several de-
cades was that the immune system evolved to discriminate
self from nonself (16). This hypothesis resulted in significant
progress in understanding the clonal recognition of antigenic
epitopes mediated by B and T lymphocytes. However, the
self/nonself framework offers little insight into why some non-
self antigens are found to be poorly immunogenic. In the last
decade, alternative models of immunity have been estab-
lished that emphasize the selective pressures on the host to
induce a pro-inflammatory innate immune response after ex-
posure to pathogen-associated molecular patterns (17,18) and
tissue damage (19–21). These responses are not antigen-
specific and are mediated by the innate immune system,
which is the first line of immune defense and is highly con-
served throughout many species. s are perceived as “danger
signals” after binding to toll-like receptors (TLRs) on phago-
cytic APCs and induce the release of pro-inflammatory cyto-
kines, which stimulate and focus the adaptive immune re-
sponse (22,23). In this new model of immunity, vaccines will
elicit a potent immune response only when the nonself anti-
gens mimic key aspects of infectious agents or cause some
degree of localized tissue damage.

Traditional vaccines such as bacterial toxoids and attenu-

Table I. Selective List of Different Classes of Adjuvants That Have
Been Evaluated for Enhancing Immune Responses to Vaccines

Mineral salts Aluminum hydroxide*
Aluminum phosphate*
Calcium phosphate*

Immunostimulatory adjuvants
Saponins e.g., QS21

Cytokines e.g., IL-2, IL-12,
GM-CSF

MDP derivatives
Bacterial DNA (CpG oligos)
LPS
MPL and synthetic derivatives
Lipopeptides

Lipid particles
Liposomes

Emulsions e.g., Freund’s,
SAF, MF59*

Virosomes*
Iscoms
Cochleates

Particulate adjuvants PLG microparticles
Poloxamer particles
Virus-like particles

Mucosal adjuvants Heat labile enterotoxin (LT)
Cholera toxin (CT)
Mutant toxins e.g., LTK63

and LTR72
Microparticles
Polymerized liposomes
Chitosan

Note: With the exception of cochleates and polymerized liposomes,
all of these adjuvants have been evaluated in clinical trials. However,
only those marked* are currently included as adjuvants in approved
vaccine products.
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ated viral vaccines often contain most of the features of real
pathogens and, therefore, are sufficiently potent to induce
protective immune responses. In contrast, recombinant vac-
cines are highly purified, lack many of the features of the
original pathogen, and do not evoke strong immune re-
sponses. Hence, it can be argued that the role of adjuvants for
recombinant vaccines is to ensure that the vaccine resembles
infection closely enough to initiate a potent immune response
(17,22). In addition, the innate immune system directs the
balance of humoral and CMI (23), and adjuvants can control
the type of acquired immune response induced (24). Adju-
vants can be divided into different broad groups based on
their principal modes of action, depending on whether or not
they have direct immunostimulatory effects on APC or func-
tion as antigen delivery systems. However, any classification
of adjuvants is difficult and many examples resist easy defi-
nitions.

IMMUNOSTIMULATORY ADJUVANTS

Monophosphoryl lipid A (MPL) is derived from LPS of
Salmonella minnesota, a gram-negative bacteria and, there-
fore, is classified as a PAMP. Like LPS, MPL is thought to
interact with TLR4 on APCs, resulting in the release of pro-
inflammatory cytokines. In a number of preclinical studies,
MPL has been shown to induce the synthesis and release of
IL-2 and interferon (IFN)-�, which promote the generation of
Th1 responses (25,26). has been formulated into emulsions to
enhance its potency (27). Clinically, MPL has often been used
in complex formulations, including liposomes and emulsions,
and has also been used in adjuvant combinations with alum
and QS21. For example, MPL showed good tolerability and
an adjuvant effect in a limited number of volunteers in com-
bination with alum (28). Overall, MPL has been extensively
evaluated in the clinic, with >10,000 subjects immunized (T.
Ulrich, personal communication) for cancer (melanoma and
breast), infectious disease vaccines (genital herpes, HBV, ma-
laria, and HPV), and for allergies, with an acceptable profile
of adverse effects. Recently, a vaccine containing MPL was
approved in Canada for use against melanoma. In addition,
MPL has been approved in Europe for use in combination
with allergy vaccines (29). Structure–function studies of MPL
allowed identification of a new generation of synthetic adju-
vants based on aminoalkyl glucosamine phosphate com-
pounds (30), the lead candidate of which (RC-529), is cur-
rently being evaluated in a clinical trial with a recombinant
hepatitis B surface antigen (HbsAg). In addition, several syn-
thetic mimetics of MPL are available from alternative
sources, which have yet to be evaluated in human subjects
(31). It has also been claimed that MPL may be used as an
adjuvant for DNA vaccines (32), although these data have
been difficult to reproduce, and for mucosal delivery of vac-
cines (33).

In the last few years, a whole new class of adjuvant active
compounds have been identified following the demonstration
that bacterial DNA, but not vertebrate DNA, had direct im-
munostimulatory effects on immune cells in vitro (34,35). The
immunostimulatory effect was due to the presence of unmeth-
ylated CpG dinucleotides (36), which are under-represented,
and methylated in vertebrate DNA. Unmethylated CpG in
the context of selective flanking sequences is thought to be
recognized by cells of the innate immune system to allow

discrimination of pathogen-derived DNA from self DNA
(37). It has recently been shown that cellular responses to
CpG DNA are mediated by binding to TLR9 (38). Previously,
it was reported that CpG are taken up by non-specific endo-
cytosis and that endosomal maturation is necessary for the
cell activation and the release of pro-inflammatory cytokines
(39). The Th1 adjuvant effect of CpG appears to be maxi-
mized by their conjugation to protein antigens (40) or their
formulation with delivery systems (Fig. 1) (41). Importantly,
CpGs also appear to have potential for the modulation of
existing immune responses, which may be useful in various
clinical settings, including allergies (42). Although, CpG have
mainly been evaluated in rodent models, recent articles have
described sequences that are active in primates, including hu-
mans (43). In addition, preliminary studies have shown a po-
tent adjuvant effect when CpG was used in combination with
HbsAg in human subjects.

A third group of immunostimulatory adjuvants are the
triterpenoid glycosides, or saponins, derived from the bark of
a Chilean tree, Quillaja saponaria. Saponins appear to func-
tion mainly through the induction of cytokines. Saponins have
been widely used as adjuvants for many years and have been
included in several veterinary vaccines. QS21, which is a
highly purified fraction from Quil A, has been shown to be a
potent adjuvant for Th1 cytokines (IL-2 and IFN-�) and an-
tibodies of the IgG2a isotype, which indicates a Th1 response
in mice (44). Saponins have been shown to intercalate into
cell membranes through interaction with structurally similar
cholesterol, forming “holes” or pores (45). It is currently un-
known whether the adjuvant effect of saponins is related to
pore formation; this may allow antigens to gain access to the
endogenous pathway of antigen presentation, promoting a
CTL response. A number of clinical trials have been per-

Fig. 1. Antibody responses after two intramuscular immunizations 4
weeks apart in mice with CpG adjuvant adsorbed to cationic PLG
microparticles co-administered with HIV-1 env gp120 recombinant
protein adsorbed onto anionic PLG microparticles. For comparison,
we evaluated PLG with gp120 adsorbed and CpG with gp120. In
addition, the responses induced were compared to gp120 in MF59.
Geometric mean titer ± SE represented for each group.
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formed, using QS21 as an adjuvant, initially for cancer vac-
cines (melanoma, breast, and prostate), and subsequently for
infectious diseases, including HIV-1, influenza, herpes, ma-
laria, and hepatitis B (46), and more than 3,500 people have
been immunized with QS21. Doses of 200 �g or higher of
QS21 have been associated with significant local reactions
(46), but lower doses appear to be better tolerated. In a recent
clinical trial with HIV-1 env antigen, QS21 was able to allow
a significant dose reduction for the antigen and also enhanced
proliferative T cell responses but not CTL (47). However,
pain on injection was a common problem for many vaccine
recipients. Hence, the balance of potency vs. adverse events is
key for this adjuvant, and an effective adjuvant dose that is
tolerable needs to be established in humans for each vaccine
indication. A recent study showed that pain at the injection
site could be reduced by reformulation of the adjuvant (48).
QS21 has also been purported to perform as an adjuvant for
DNA vaccines after both systemic and mucosal administra-
tion (49). QS21 has also shown enhanced potency in combi-
nation with additional adjuvants, to include , CpG DNA, and
alternative Quil fractions.

As an alternative to the use of cytokine inducing adju-
vants, cytokines may also be used directly. Most cytokines
have the ability to modify and redirect the immune response.
The cytokines that have been evaluated most extensively as
adjuvants include IL-1, IL-2, IFN-�, IL-12, and GM-CSF (50).
However, all of these molecules exhibit dose-related toxicity.
In addition, because they are proteins, they have stability
problems, a short in vivo half-life, and are relatively expen-
sive. Therefore, it is unlikely that cytokines will prove accept-
able for use as adjuvants in vaccines designed to protect
against infectious diseases. Nevertheless, considerable prog-
ress has been made in the use of cytokines for the immuno-
therapy of cancer (51).

PARTICULATE ANTIGEN DELIVERY SYSTEMS

The use of particulate adjuvants, or antigen delivery sys-
tems, as alternatives to immunostimulatory adjuvants has
been evaluated by several groups. Particulate adjuvants (e.g.,
emulsions, microparticles, iscoms, liposomes, virosomes, and
virus-like particles) have comparable dimensions to the
pathogens that the immune system evolved to combat. Im-
munostimulatory adjuvants may also be included in particu-
late delivery systems to enhance the level of response or to
focus the response through a desired pathway, e.g., Th1. In
addition, formulating potent immunostimulatory adjuvants
into delivery systems may limit adverse events, through re-
stricting the systemic circulation of the adjuvant.

Lipid Particles as Adjuvants

A potent oil-in-water (o/w) adjuvant, the syntex adjuvant
formulation (52) was developed using a biodegradable oil
(squalane) in the 1980s as a replacement for Freund’s adju-
vants. Freund’s adjuvants are strong adjuvants comprised of a
water-in-oil emulsion with or without killed mycobacteria
(53). However, syntex adjuvant formulation contained a bac-
terial cell wall-based synthetic adjuvant, threonyl muramyl
dipeptide (MDP), and a non-ionic surfactant, poloxamer
L121, and proved too toxic for widespread use in humans
(14). Therefore, a squalene o/w emulsion was developed

(MF59) without the presence of additional immunostimula-
tory adjuvants, which proved to be a potent adjuvant with an
acceptable safety profile (54). MF59 enhanced the immuno-
genicity of influenza vaccine in small animal models (55–57)
and was shown to be a more potent adjuvant than alum for
hepatitis B vaccine (HBV) in baboons (58). Subsequently, the
the safety and immunogenicity of MF59 adjuvanted influenza
vaccine (FLUAD™) was confirmed in elderly subjects in
clinical trials (59,60) and these data allowed the approval of
this product for licensure in 1997. A recent study has shown
that the potency of MF59 as an adjuvant for influenza vac-
cines might be particularly advantageous to protect against
potential pandemic strains of virus (61). The potency of MF59
for HBV has also been confirmed in a human clinical trial, in
which MF59 was shown to be 100-fold more potent than the
commercial Alum adjuvanted vaccine (Fig. 2) (62). In addi-
tion, MF59 has also been shown to be an effective adjuvant
for a protein/polysaccharide conjugate vaccines in infant ba-
boons (63). Experience in the clinic (>18,000 subjects immu-
nized in Chiron controlled clinical trials) with HIV, HSV,
CMV, HBV, and influenza has shown that MF59 is safe and
well-tolerated in humans (64–67) In addition, MF59 was
shown to be safe and well-tolerated in newborn infants in a
HIV vaccine trial (68). MF59 may also be used with recom-
binant proteins as an effective booster vaccine after immuni-
zation with live viruses (69) or DNA (70) vaccines. In sum-
mary, MF59 is a safe and well-tolerated vaccine adjuvant in
humans and is effective for the induction of potent antibody
responses.

In many studies, emulsions have also been used as deliv-
ery systems for immunostimulatory adjuvants, including MPL
and QS21. This approach allows immunostimulatory adju-
vants to be targeted for enhanced uptake by APC. An o/w
emulsion containing MPL and QS21 induced protection in a

Fig. 2. Two injections of MF59 adjuvant in combination with HBV
induced significantly higher antibody responses in humans than the
commercially available Alum-adsorbed vaccine (Recombivax).
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mouse model of malaria that was comparable or better than
the levels of protection induced with the vaccine in Freund’s
complete adjuvant (71). The adjuvant formulation (SBAS-2)
subsequently showed protective efficacy against an experi-
mental challenge in human volunteers exposed to infected
mosquitoes, although protection was of short duration (72).
In a subsequent trial with HIV-1 env, SBAS-2 induced high
titers and proliferative T cell responses but did not induce
CTL or primary isolate-neutralizing antibodies (73). In addi-
tion, the formulation was associated with a significant number
of adverse events, and the reactogenicity profile observed
appeared to preclude its use for most if not all prophylactic
vaccines. An alternative emulsion-based approach involves
the use of the Montanide series of adjuvants, which can be
formulated as water in oil, o/w, or water in o/w emulsions
(74,75). The water in mineral oil (Drakeol) adjuvant (ISA-51)
has been evaluated as an immunotherapeutic vaccine in HIV
infected individuals (76). However, becaues of significant ad-
verse effects, mineral oil adjuvants are unlikely to be consid-
ered as acceptable for prophylactic vaccines, although they
might be appropriate for some therapeutic vaccines. An al-
ternative approach, comprising water in squalene emulsion
(ISA-720), has also been evaluated in a malaria vaccine trial
(74). However, although potent, this adjuvant induced severe
local reactions in some volunteers and may not prove accept-
able for routine clinical use in prophylactic vaccines (77,78).

Liposomes are phospholipid vesicles that have been
evaluated both as adjuvants and as delivery systems for anti-
gens and adjuvants (79,80). Liposomes have been commonly
used in complex formulations, often including MPL, which
makes it difficult to determine the contribution of the lipo-
some to the overall adjuvant effect. Nevertheless, several li-
posomal vaccines based on viral membrane proteins (viro-
somes) without additional immunostimulators have been ex-
tensively evaluated in the clinic and are approved as products
in Europe for hepatitis A and influenza (81). Immunopoten-
tiating reconstituted influenza virosomes are unilamellar li-
posomes composed of mainly phosphatidylcholine, with in-
fluenza haemagglutinin intercalated into the membrane. The
use of viral membrane proteins in the formation of virosomes
offers the opportunity to exploit the targeting and fusogenic
properties of the native viral membrane proteins, perhaps
resulting in effective delivery of entrapped antigens into the
cytosol for CTL induction (82). An alternative approach to
vaccine delivery that may have some advantages over tradi-
tional liposomes has been described using “archaeosomes,”
which are vesicles prepared from the polar lipids of Archao-
bacteria (83). In some studies, archaosomes have been shown
to be more potent than liposomes (83,84). Cationic lipid
vesicles have also been described recently, which comprise
cationic cholesterol derivatives with or without neutral phos-
pholipids (85). The best results were obtained with cationic
vesicles to which antigen were bound to the surface, which
greatly out-performed neutral liposomes, which did not bind
antigen (85). O/w liposomal formulations recently were de-
scribed in which mineral oil was emulsified in the presence of
liposomes, which donated phospholipids as stabilizers (86).
However, this is a complex formulation, which would need to
show a dramatic improvement over alternative approaches
before it can be accepted as a significant advance in the field.
Modified liposomal structures termed “cochleates” are also
being evaluated as systemic and mucosal adjuvants in small

animal models (87). In addition, the development of polymer-
ized liposomes, which show enhanced stability in the gut, also
offers potential for the development of mucosal vaccines (88).

The immunostimulatory fractions from Quillaja sapo-
naria (Quil A) have been incorporated into lipid particles
containing cholesterol, phospholipids, and cell membrane an-
tigens, which are called iscoms (89). In a study in macaques,
an influenza iscom vaccine was shown to be more immuno-
genic than a classical subunit vaccine and induced enhanced
protective efficacy (90). A similar formulation has been
evaluated in human clinical trials and has been shown to in-
duce CTL responses (91). The principal advantage of the
preparation of iscoms is to allow a reduction in the dose of the
hemolytic Quil A adjuvant and to target the formulation di-
rectly to APCs. In addition, within the Iscom structure, the
Quil A is bound to cholesterol and is not free to interact with
cell membranes. Therefore, the hemolytic activity of the sa-
ponins is significantly reduced (89,92). It is well established
that Iscoms induce cytokine production in a range of mouse
strains and a recent study has indicated that the induction of
IL-12 is key to the adjuvant effect of iscoms (93), In previous
studies, strong IFN-� responses were also described (94). In a
study in rhesus macaques, iscoms induced potent Th1 re-
sponses against HIV-1 env, whereas MF59 induced a Th2
response, although both vaccines offered a significant degree
of protection against viral challenge (95). Although not evalu-
ated in this study, iscoms are generally considered to be the
most potent adjuvant for the induction of CTL responses with
recombinant proteins in pre-clinical models. For example, in
a recent study, we demonstrated the induction of potent long
lasting CTL responses in rhesus macaques immunized with a
recombinant core antigen from hepatitis C virus adsorbed to
a novel iscom formulation (96). In addition, potent T cell
proliferative responses have been induced in primates with
iscom vaccines containing CMV, flu, HIV, HCV, and EBV
antigens (89,97). However, the efficacy for CTL induction,
and the safety profile of iscoms needs to be further estab-
lished in human subjects, although initial studies are encour-
aging (98). Iscoms are also being evaluated as cancer vaccines
and initial results are promising. A potential problem with
iscom’s is that inclusion of antigens into the adjuvant is often
difficult, and may require extensive antigen modification (99).
Nevertheless, recent work has identified novel ways by which
some antigens can be effectively associated with iscoms, with-
out significant formulation difficulties (96). Iscoms can also
be used for intranasal delivery of vaccines, including influenza
virus (97).

An alternative approach involving lipid vesicles has also
been described involving non-ionic surfactant vesicle, or “nio-
somes,” which have induced potent responses in small animal
models (100). In addition, it has been suggested that an im-
portant component of the adjuvant effect of synthetic lipo-
peptide antigens is their ability to aggregate into particulate
structures (101), although interaction with Toll-like receptors
is also important. In addition, we have shown that the potency
of lipopeptides can be enhanced by their formulation into
particulate delivery systems (102).

Microparticles as Adjuvants

Antigen uptake by APCs is enhanced by the association
of antigen with polymeric microparticles or by the use of
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polymers or proteins that self-assemble into particles. The
biodegradable and biocompatible polyesters, the polylactide-
co-glycolides (PLGs), are the primary candidates for the de-
velopment of microparticles as adjuvants because they have
been used in humans for many years as suture material and as
controlled-release drug-delivery systems (103,104). The adju-
vant effect achieved through the encapsulation of antigens
into PLG microparticles was first demonstrated by several
groups in the early 1990s (105–108). In contrast to alum, PLG
microparticles have been shown to be effective for the induc-
tion of CTL responses in rodents (102,109,110). The adjuvant
effect of microparticles seems to be largely a consequence of
their uptake into APC. Microparticles also appear to have
significant potential as an adjuvant for DNA vaccines
(111,112). We have recently described a novel approach in
which cationic microparticles with adsorbed plasmids were
used to dramatically enhance the potency of DNA vaccines
(112). Importantly, the cationic microparticles enhanced re-
sponses in a range of animal models, including non-human
primates (Table II). They efficiently adsorbed DNA and de-
livered several plasmids simultaneously on the same formu-
lation at a range of different loading levels (113,114) The
microparticles appeared to be effective as a consequence of
efficient delivery of the adsorbed plasmids into DCs, the most
important APC for presentation of antigen to naive T cells
(115). In addition, cationic microparticles can be used as de-
livery systems for adjuvant active molecules, including CpG
DNA (41). Similar anionic microparticles can also be used for
delivery of adsorbed proteins and are effective for CTL in-
duction in mice (116). In a recent study with HIV-1 vaccines,
the potency of microparticles as an adjuvant was significantly
enhanced by their formulation into MF59 (117). A particu-
larly attractive feature of microparticles is their ability to con-
trol the rate of release of entrapped antigens (118,119). Con-
trolled release of antigen may allow the development of
single-dose vaccines, which would result in improved vaccine
compliance, particularly in the developing world. However,
much work is needed to ensure the stability of antigens en-
trapped in microparticles. It has been shown on several oc-
casions that controlled-release microparticles work optimally
for bacterial toxoid based vaccines when they are combined
with traditional Alum adjuvants (119). Recent pronounce-
ments suggest that this approach will be evaluated in the clinic
in the near future (120).

Polymers that self-assemble into particulates (poloxam-
ers) (121) or soluble polymers (polyphosphazenes) (122) may

also be used as adjuvants, but the safety and tolerability of
these approaches remains to be further evaluated.

Recombinant proteins that naturally self assemble into
particles can also be used to enhance delivery of antigens to
DCs. The first recombinant protein vaccine that was devel-
oped, HbsAg, was expressed in yeast as a particulate protein
(123). Recombinant HBsAg is potently immunogenic and can
be used to prime CTL responses in vivo (124). HBsAg and
other virus-like particles (VLPs) can also be used as adjuvants
for co-expressed proteins (125). For example, recombinant Ty
VLPs from Saccharomyces cerevisiae carrying a string of up to
15 CTL epitopes from Plasmodium species have been shown
to prime protective CTL responses in mice after a single im-
munization (126). In addition, Ty VLPs have also been shown
to induce CTL activity in macaques against co-expressed SIV
p27 (127). Clinical trials of Ty VLPs have shown them to be
safe and immunogenic in humans (128).

ALTERNATIVE ROUTES OF IMMUNIZATION

Although most vaccines traditionally have been admin-
istered by intramuscular or subcutaneous injection, mucosal
administration of vaccines offers a number of important ad-
vantages, including easier administration, reduced adverse ef-
fects, and the potential for frequent boosting. In addition,
local immunization induces mucosal immunity at the sites
where many pathogens initially establish infection of hosts. In
general, systemic immunization has failed to induce mucosal
IgA antibody responses. Oral immunization would be par-
ticularly advantageous in isolated communities, where access
to health care professionals is difficult. Moreover, mucosal
immunization would avoid the potential problem of infection
resulting from the re-use of needles. Several orally adminis-
tered vaccines are commercially available that are based on
live-attenuated organisms, including vaccines against polio vi-
rus, Vibrio cholerae, and Salmonella typhi. In addition, a wide
range of approaches are currently being evaluated for muco-
sal delivery of vaccines (129), including many approaches in-
volving non-living adjuvants and delivery systems.

The most attractive route for mucosal immunization is
oral because of the ease and acceptability of administration
through this route. However, as a result of the presence of
acidity in the stomach, an extensive range of digestive en-
zymes in the intestine and a protective coating of mucus that
limits access to the mucosal epithelium, oral immunization
has proven extremely difficult with non-living antigens. How-
ever, novel delivery systems and adjuvants may be used to
significantly enhance the responses following oral immuniza-
tion.

Mucosal Immunization with Microparticles

In mice, oral immunization with PLG microparticles has
been shown to induce potent mucosal and systemic immunity
to entrapped antigens (130–133). In addition, mucosal immu-
nization with microparticles induced protection against chal-
lenge with Bordetella pertussis (134–137), Chlamydia tracho-
matis (138), and Salmonella typhimurium (139). In primates,
mucosal immunization with inactivated SIV in microparticles
induced protective immunity against intravaginal challenge
(140). Also in primates, mucosal immunization with micro-
particles induced protection against aerosol challenge with

Table II. Levels of Enhancement of Antibody Responses Achieved
with Cationic PLG/DNA Microparticles in Comparison to Naked
DNA (HIV-1 gag) after Two Intramuscular Immunizations 4 weeks

Apart in Various Animal Models

Species

DNA
dose
(�g)

Geometric mean titer
serum IgG

Fold increase
over naked

DNA
Naked
DNA

PLG/CTAB
/DNA

Mice 1 �g 22 7664 >300
Guinea pigs 100 �g 868 12882 >15
Rabbits 250 �g 644 8778 >12
Rhesus macaques 500 �g 190 10,220 >200
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staphylococcal enterotoxin B (141). Comparative studies
have indicated that microparticles are one of the most potent
adjuvants available for mucosal delivery of vaccines (142). In
recent studies, microparticles have also shown some promise
for the mucosal delivery of DNA (143,144). The ability of
microparticles to perform as effective adjuvants after mucosal
administration is largely a consequence of their uptake into
the specialized mucosal-associated lymphoid tissue (145). Al-
though most of this work has described particle uptake after
oral delivery, a recent paper described the uptake of micro-
particles into mice following intranasal delivery (146). The
potential of microparticles and other polymeric systems for
mucosal delivery of vaccines was recently reviewed (147), as
was the use of a broader range of antigen delivery systems
(148). Although microparticles have significant potential for
mucosal delivery of vaccines, their potency may be improved
by their use in combination with additional adjuvants. This is
likely to be a pre-requisite for the development of effective
oral vaccines, since the challenges should not be under esti-
mated. Accumulated experimental evidence suggests that
simple encapsulation of vaccines into microparticles is un-
likely to result in the successful development of oral vaccines
and improvements in the current technology are clearly
needed (149).

Adjuvants for Mucosal Immunization

The most potent mucosal adjuvants currently available
are the bacterial toxins from Vibrio cholerae and Escherichia
coli, cholera toxin (CT), and heat-labile enterotoxin (LT),
respectively. However, because CT and LT are the causes of
cholera and travellers diarrhoea, they are generally consid-
ered too toxic for use in humans. Therefore, they have been
genetically manipulated to reduce toxicity (150–152). Single
amino acid substitutions in the enzymatic A subunit of LT
allowed the development of mutant toxins that retained po-
tent adjuvant activity, but showed negligible or dramatically
reduced toxicity (153–155). LT mutants have been used by
the oral route to induce protective immunity in mice against
H. pylori challenge (156). In addition, LT mutants have been
shown to be potent oral adjuvants for influenza vaccine (157)
and model antigens (158).

Nevertheless, because of the significant challenges asso-
ciated with oral immunization, various alternative routes of
immunization have been evaluated with LT mutants, includ-
ing nasal, intravaginal, and intra-rectal. Of these, intranasal
immunization offers the most promise, both because of the
potent responses induced by this route and the easy access
and simple administration devices that already exist. On
many occasions, the ability of LT mutants to induce potent
antibody responses after intranasal immunization has been
demonstrated (159). In recent studies, LT mutants have
shown protection against challenge with B. pertussis (160), S.
pneumoniae (161), and herpes simplex virus (162) after intra-
nasal immunization and the induction of potent CTL re-
sponses (163,164). In addition, we recently showed that the
potency of LT mutants may be enhanced by their formulation
into a novel bioadhesive microsphere delivery system (Fig. 3)
(165). In addition, the potency of LT mutants was not affected
by the presence of pre-existing immunity to the adjuvant
(166). A virosomal influenza vaccine with low-dose LT wild
type has been evaluated in human clinical trials and showed

potent responses while appearing to be safe (167,168). The
apparent safety of this approach in humans using wild type
LT is strongly supportive of the approach using genetically
detoxified LT mutants.

Although the mechanisms of action of CT and LT remain
to be fully defined, it appears that there are important con-
tributions to the adjuvant effect from the B subunit binding
domain, the presence of an intact A subunit, which interacts
with regulatory proteins inside cells, and also the enzymatic
activity of the A1 subunit (159). Recently, an enzymatically
inactive recombinant CT mutant has been proposed to di-
rectly activate APC and T cells (169). In addition, the ability
of CT to induce the activation and maturation of human DC
has been reported (170).

Recent studies have indicated that potent mucosal adju-
vants such as CT may also allow vaccination after topical
application to the skin (171) and that this approach may be
applicable to humans (172). In addition, epidermal immuni-
zation may be achieved using needle-free devices, which use
helium gas to deposit powdered vaccine into the epidermis
(173). An alternative approach to the development of muco-
sal adjuvants involves the use of plant lectins (174). Further-
more, oral immunization may also be achieved through the
ingestion of transgenic plants expressing antigens and adju-
vants (175,176).

ADJUVANTS FOR THERAPEUTIC VACCINES

It seems increasingly likely that novel adjuvants may
prove sufficiently potent to allow the development of thera-
peutic vaccines. Rather than prevent infection, therapeutic
vaccines would be designed to eliminate or ameliorate exist-
ing diseases, including 1) chronic infectious diseases, e.g.,

Fig. 3. After two intranasal immunizations 4 weeks apart in mice,
enhanced serum antibody responses were obtained with influenza
vaccine (HA) and mucosal adjuvant LTK63 in combination with bio-
adhesive HYAFF microspheres (HA + LTK63 + HYAFF). For com-
parison, mice were also immunized with antigen alone (HA), antigen
and microspheres (HA + HYAFF) or antigen plus adjuvant (HA +
LTK63). Geometric mean titer ± SE represented for each group.
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those caused by HSV, HIV, HCV, HBV, HPV, or H. pylori;
2) tumors, e.g., melanoma, breast, or colon cancer; and 3)
allergic or autoimmune disorders, e.g., multiple sclerosis,
Type I diabetes, and rheumatoid arthritis. For example, a
preliminary clinical study in subjects infected with HSV-2
showed a therapeutic benefit following vaccination with an
adjuvanted recombinant vaccine (177).

The level of toxicity acceptable for an adjuvant to be
used in a therapeutic situation is likely to be higher than for
a prophylactic vaccine designed for use in healthy individuals,
particularly if the vaccine is designed to treat cancer, or the
life-threatening consequences of an infectious disease. How-
ever, the acceptable safety profile for any new vaccine/
adjuvant combination needs to be established in the clinic.
Many adjuvants, including (178), QS21 (28), and cytokines
(179) have been evaluated for the development of cancer
vaccines and recent data has been encouraging.

Therapeutic vaccines may also be developed for mucosal
administration. For example, an LT mutant has been used to
eradicate an established infection with H. pylori in mice (180).
In addition, preliminary studies offered some encouragement
that oral administration of antigens can result in the amelio-
ration of autoimmune diseases, including diabetes (181).

FUTURE DEVELOPMENTS IN
VACCINE ADJUVANTS

Several recent issues have served to highlight the urgent
need for the development of new and improved vaccines.
These problems have included 1) the inability of traditional
approaches to develop successful vaccines against “difficult”
organisms such as HIV and HCV; 2) the emergence of new
diseases, for instance, Ebola, West Nile, and nvCJD; 3) the
re-emergence of “old” infections like tuberculosis; 4) the con-
tinuing spread of antibiotic-resistant bacteria; and 5) the po-
tential use of microorganisms for bioterrorism. In this review,
we have suggested that the adjuvants to be used in these
vaccines may have to closely mimic an infection and/or induce
localized tissue damage to elicit protective immunity. This
may be achieved through the use of particulate delivery sys-
tems, which have similar dimensions to pathogens and are
able to target antigens to macrophages and DCs. In addition,
it may also be necessary to deliver one or more adjuvant
active , which will more fully activate the innate response and
may result in the desired type of adaptive response. If this
hypothesis is correct, it suggests that a delicate balance must
be maintained between the desired initiation of immune re-
sponses and avoidance of the problems potentially associated
with a robust response, e.g., local tissue damage and systemic
cytokine release. Many of these new generation vaccines will
require the induction of potent CMI, including CTL re-
sponses. Accumulated research shows that induction of CTL
is difficult with proteins and may require much stronger
stimulation of the immune system than is normally required
for a humoral response. Therefore, DNA remains an attrac-
tive approach for many pathogens but needs to be delivered
more effectively to improve its potency in humans. In addi-
tion, live virus booster immunizations may also be required
for optimal induction of CTL.

Targeted delivery of adjuvants and vaccines to specific
cell types or tissues may reduce potential toxic effects, or help
to achieve a specific desired response. Targeting may be

achieved at several different levels, to include tissue specific
delivery to local lymph nodes, cell specific targeting to APC,
or targeting to subcellular compartments e.g., the proteasome
to promote Class I presentation and CTL, or the nucleus for
DNA vaccines. However, “active” targeting may also be
achieved through the use of ligands designed to specifically
interact with preferred cell types, including the non-clonal
receptors on APC, which evolved to recognize various com-
ponents of bacteria and viruses, including TLR. An alterna-
tive target is the mannose receptor, which has been used to
target liposomes to APCs (182). Lectins have already been
successfully used to target antigens (183), liposomes (184),
and microparticles (185) to the M cells of mucosal-associated
lymphoid tissue after mucosal delivery. In addition, lectin tar-
geting has also been used to enhance the extent of uptake of
microparticles following oral delivery (186). However, the use
of targeting ligands on particulate systems requires the con-
struction of a highly sophisticated delivery system, which will
be required to show dramatic improvements over non-
targeted systems to justify commercialization. Further devel-
opments in the delivery of adjuvants may be achieved through
the identification of specific receptors on APC, which might
be extra- or intracellular. If intracellular, then a means to
promote uptake of the delivery system by the relevant cells
may also be required for optimal efficacy. An interesting ap-
proach to targeting APCs has been described that involves
co-expression of two linked proteins, with a targeting compo-
nent and an adjuvant signal (187–189). An alternative ap-
proach to vaccine targeting for CTL induction has also been
described using a fusion protein with a bacterial toxin to de-
liver the antigen specifically to the Class I processing pathway
(190,191)

Future developments in adjuvants are likely to include
the development of more site-specific delivery systems for
both mucosal and systemic administration. In addition, the
identification of specific receptors on APCs is likely to allow
targeting of adjuvants for the optimal induction of potent and
specific immune responses. However, further developments
in novel adjuvants will likely be driven by a better under-
standing of the mechanism of action of currently available
adjuvants and this is an area of research that requires addi-
tional work.
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